Deep Modeling Complex Couplings within Financial Markets

Author:

Cao Wei,Hu Liang,Cao Longbing

Abstract

The global financial crisis occurred in 2008 and its contagion to other regions, as well as the long-lasting impact on different markets, show that it is increasingly important to understand the complicated coupling relationships across financial markets. This is indeed very difficult as complex hidden coupling relationships exist between different financial markets in various countries, which are very hard to model. The couplings involve interactions between homogeneous markets from various countries (we call intra-market coupling), interactions between heterogeneous markets (inter-market coupling) and interactions between current and past market behaviors (temporal coupling). Very limited work has been done towards modeling such complex couplings, whereas some existing methods predict market movement by simply aggregating indicators from various markets but ignoring the inbuilt couplings. As a result, these methods are highly sensitive to observations, and may often fail when financial indicators change slightly. In this paper, a coupled deep belief network is designed to accommodate the above three types of couplings across financial markets. With a deep-architecture model to capture the high-level coupled features, the proposed approach can infer market trends. Experimental results on data of stock and currency markets from three countries show that our approach outperforms other baselines, from both technical and business perspectives.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AD-autoformer: decomposition transformers with attention distilling for long sequence time-series forecasting;The Journal of Supercomputing;2024-06-06

2. Deep Coupling Network for Multivariate Time Series Forecasting;ACM Transactions on Information Systems;2024-04-27

3. Short-term Power Load Forecasting Based on FA-LSTM with Similar Day Selection;2023 IEEE 3rd International Conference on Electronic Technology, Communication and Information (ICETCI);2023-05-26

4. Classification of diseases from CT images using LSTM-based CNN;Diagnostic Biomedical Signal and Image Processing Applications with Deep Learning Methods;2023

5. A New Time Series Forecasting Model Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Temporal Convolutional Network;Neural Processing Letters;2022-10-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3