Level-0 Models for Predicting Human Behavior in Games

Author:

Wright James R.,Leyton-Brown Kevin

Abstract

Behavioral game theory seeks to describe the way actual people (as compared to idealized, "rational" agents) act in strategic situations. Our own recent work has identified iterative models, such as quantal cognitive hierarchy, as the state of the art for predicting human play in unrepeated, simultaneous-move games. Iterative models predict that agents reason iteratively about their opponents, building up from a specification of nonstrategic behavior called level-0. A modeler is in principle free to choose any description of level-0 behavior that makes sense for a given setting. However, in practice almost all existing work specifies this behavior as a uniform distribution over actions. In most games it is not plausible that even nonstrategic agents would choose an action uniformly at random, nor that other agents would expect them to do so. A more accurate model for level-0 behavior has the potential to dramatically improve predictions of human behavior, since a substantial fraction of agents may play level-0 strategies directly, and furthermore since iterative models ground all higher-level strategies in responses to the level-0 strategy. Our work considers models of the way in which level-0 agents construct a probability distribution over actions, given an arbitrary game. We considered a large space of alternatives and, in the end, recommend a model that achieved excellent performance across the board: a linear weighting of four binary features, each of which is general in the sense that it can be computed from any normal form game. Adding real-valued variants of the same four features yielded further improvements in performance, albeit with a corresponding increase in the number of parameters needing to be estimated. We evaluated the effects of combining these new level-0 models with several iterative models and observed large improvements in predictive accuracy.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3