Computing Repairs of Inconsistent DL-Programs over EL Ontologies

Author:

Eiter Thomas,Fink Michael,Stepanova Daria

Abstract

Description Logic (DL) ontologies and non-monotonic rules are two prominent Knowledge Representation (KR) formalisms with complementary features that are essential for various applications. Nonmonotonic Description Logic (DL) programs combine these formalisms thus providing support for rule-based reasoning on top of DL ontologies using a well-defined query interface represented by so-called DL-atoms. Unfortunately, interaction of the rules and the ontology may incur inconsistencies such that a DL-program lacks answer sets (i.e., models), and thus yields no information. This issue is addressed by recently defined repair answer sets, for computing which an effective practical algorithm was proposed for DL-Lite A ontologies that reduces a repair computation to constraint matching based on so-called support sets. However, the algorithm exploits particular features of DL-Lite A and can not be readily applied to repairing DL-programs over other prominent DLs like EL. compared to DL-Lite A , in EL support sets may neither be small nor only few support sets might exist, and completeness of the algorithm may need to be given up when the support information is bounded. We thus provide an approach for computing repairs for DL-programs over EL ontologies based on partial (incomplete) support families. The latter are constructed using datalog query rewriting techniques as well as ontology approximation based on logical difference between EL-terminologies. We show how the maximal size and number of support sets for a given DL-atom can be estimated by analyzing the properties of a support hypergraph, which characterizes a relevant set of TBox axioms needed for query derivation. We present a declarative implementation of the repair approach and experimentally evaluate it on a set of benchmark problems; the promising results witness practical feasibility of our repair approach.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Database Repairs and Consistent Query Answering;Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems - PODS '19;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3