Individual and Domain Adaptation in Sentence Planning for Dialogue

Author:

Walker M. A.,Stent A.,Mairesse F.,Prasad R.

Abstract

One of the biggest challenges in the development and deployment of spoken dialogue systems is the design of the spoken language generation module. This challenge arises from the need for the generator to adapt to many features of the dialogue domain, user population, and dialogue context. A promising approach is trainable generation, which uses general-purpose linguistic knowledge that is automatically adapted to the features of interest, such as the application domain, individual user, or user group. In this paper we present and evaluate a trainable sentence planner for providing restaurant information in the MATCH dialogue system. We show that trainable sentence planning can produce complex information presentations whose quality is comparable to the output of a template-based generator tuned to this domain. We also show that our method easily supports adapting the sentence planner to individuals, and that the individualized sentence planners generally perform better than models trained and tested on a population of individuals. Previous work has documented and utilized individual preferences for content selection, but to our knowledge, these results provide the first demonstration of individual preferences for sentence planning operations, affecting the content order, discourse structure and sentence structure of system responses. Finally, we evaluate the contribution of different feature sets, and show that, in our application, n-gram features often do as well as features based on higher-level linguistic representations.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Worker-centric heat strain analysis: Integrating physiological signals with ensemble learning and domain adaptation;Automation in Construction;2024-10

2. Neural Methods for Data-to-text Generation;ACM Transactions on Intelligent Systems and Technology;2024-05-08

3. Machine Learning for Data Flow Processing in Learning Process;2023 International Conference on Artificial Intelligence and Smart Communication (AISC);2023-01-27

4. Feedback Effect in User Interaction with Intelligent Assistants: Delayed Engagement, Adaption and Drop-out;Advances in Knowledge Discovery and Data Mining;2023

5. Towards Modelling Elaborateness in Argumentative Dialogue Systems;Artificial Intelligence in HCI;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3