Conflict-Directed Backjumping Revisited

Author:

Chen X.,Van Beek P.

Abstract

In recent years, many improvements to backtracking algorithms for solving constraint satisfaction problems have been proposed. The techniques for improving backtracking algorithms can be conveniently classified as look-ahead schemes and look-back schemes. Unfortunately, look-ahead and look-back schemes are not entirely orthogonal as it has been observed empirically that the enhancement of look-ahead techniques is sometimes counterproductive to the effects of look-back techniques. In this paper, we focus on the relationship between the two most important look-ahead techniques---using a variable ordering heuristic and maintaining a level of local consistency during the backtracking search---and the look-back technique of conflict-directed backjumping (CBJ). We show that there exists a ``perfect'' dynamic variable ordering such that CBJ becomes redundant. We also show theoretically that as the level of local consistency that is maintained in the backtracking search is increased, the less that backjumping will be an improvement. Our theoretical results partially explain why a backtracking algorithm doing more in the look-ahead phase cannot benefit more from the backjumping look-back scheme. Finally, we show empirically that adding CBJ to a backtracking algorithm that maintains generalized arc consistency (GAC), an algorithm that we refer to as GAC-CBJ, can still provide orders of magnitude speedups. Our empirical results contrast with Bessiere and Regin's conclusion (1996) that CBJ is useless to an algorithm that maintains arc consistency.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of Artificial Intelligence in Agriculture with Special Reference to Agriculture Information Research;Current Agriculture Research Journal;2023-05-10

2. Scoping Review on AI as a Driver for Industry;Digital Technologies and Transformation in Business, Industry and Organizations;2023

3. A problem-independent search heuristic for single machine scheduling with release dates and deadlines;2022 IEEE Symposium Series on Computational Intelligence (SSCI);2022-12-04

4. Artificial Intelligence Technology and Applications in the Current Scenario;Advances in Computational Intelligence and Robotics;2022-06-17

5. Large-scale periodic scheduling in time-sensitive networks;Computers & Operations Research;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3