How Hard Is Bribery in Elections?

Author:

Faliszewski P.,Hemaspaandra E.,Hemaspaandra L. A.

Abstract

We study the complexity of influencing elections through bribery: How computationally complex is it for an external actor to determine whether by paying certain voters to change their preferences a specified candidate can be made the election’s winner? We study this problem for election systems as varied as scoring protocols and Dodgson voting, and in a variety of settings regarding homogeneous-vs.-nonhomogeneous electorate bribability, bounded-size-vs.-arbitrary-sized candidate sets, weighted-vs.-unweighted voters, and succinct-vs.-nonsuccinct input specification. We obtain both polynomial-time bribery algorithms and proofs of the intractability of bribery, and indeed our results show that the complexity of bribery is extremely sensitive to the setting. For example, we find settings in which bribery is NP-complete but manipulation (by voters) is in P, and we find settings in which bribing weighted voters is NP-complete but bribing voters with individual bribe thresholds is in P. For the broad class of elections (including plurality, Borda, k-approval, and veto) known as scoring protocols, we prove a dichotomy result for bribery of weighted voters: We find a simple-to-evaluate condition that classifies every case as either NP-complete or in P.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DSCAPS: A decentralized smart contract auditing platform based on sidechain;Information Sciences;2024-08

2. Apportionment with Thresholds: Strategic Campaigns are Easy in the Top-Choice but Hard in the Second-Chance Mode;Lecture Notes in Computer Science;2024

3. How hard is safe bribery?;Theoretical Computer Science;2023-11

4. Priced Gerrymandering;Theoretical Computer Science;2023-09

5. Fine-grained view on bribery for group identification;Autonomous Agents and Multi-Agent Systems;2023-03-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3