Experimental Investigation of Seawater for the Absorption of Carbon Dioxide from Ship Chimneys

Author:

Koçyiğit Çapoğlu İrem1ORCID,Uysal Duygu1ORCID,Doğan Özkan Murat1ORCID,Uysal Bekir Zühtü1ORCID

Affiliation:

1. GAZİ ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, KİMYA MÜHENDİSLİĞİ BÖLÜMÜ

Abstract

Carbon dioxide (CO2) is the most important greenhouse gas that causes global warming. It is crucial to remove CO2 from the atmosphere to combat climate change. It is believed that seawater could be a potential source for capturing CO2, especially from ship chimneys and potentially high-concentration CO2 emissions in coastal regions. In this study, the CO2 absorption performance of sodium chloride (NaCl) solution as seawater, was investigated. The first phase of experiments was performed in a stirred cell at 91 kPa and 20°C. The total CO2 absorption capacity (molCO2L-1 solution) and dissolution rate (mols-1) of the solutions were determined by the pressure drop values occurring inside the cell. The experiments were conducted by preparing NaCl solutions at different concentrations (0-3.5 wt%). Additionally, 0.4% by volume calcium oxide (CaO) solution was added to NaCl solutions at different concentrations and its contribution to CO2 absorption was examined. It was observed that there was a decrease in CO2 absorption performance with the increase in salinity. However, it was determined that the addition of CaO to the NaCl solution had a positive effect on CO2 absorption performance and increased the total CO2 absorption capacity by 66%. The second phase of experiments was carried out in a falling film column. In these experiments, the liquid side individual physical mass transfer coefficients (kL0) were determined by the oxygen (O2) desorption method for pure water and 3.5 wt% NaCl solution. Also, nonlinear regression analyses were performed, and correlations were developed for mass transfer coefficients.

Publisher

Canakkale Onsekiz Mart University

Reference38 articles.

1. IPCC, Climate Change 2022: Impacts, Adaptation and Vulnerability, in: H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (Eds.), Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Switzerland, 2022, 35 pages.

2. IPCC, Global Warming of 1.5°C, in: Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (Eds.) Intergovernmental Panel on Climate Change, Switzerland, 2018, pp. 541–562.

3. H. Öztan, İ. Koçyiğit Çapoğlu, D. Uysal, Ö. M. Doğan, A parametric study to optimize the temperature of hazelnut and walnut shell gasification for hydrogen and methane production, Bioresource Technology Reports 23 (2023) 101581.

4. Ö. Yörük, D. Uysal Zıraman, B. Z. Uysal, Absorption of sulfur dioxide by iron(ii) hydroxide solution in a multiplate bubble column under magnetic field, Chemical Engineering & Technology 44 (1) (2021) 1336–1342.

5. Y. Yagizatli, B. Ulas, A. Sahin, İ. Ar, Investigation of sulfonation reaction kinetics and effect of sulfonation degree on membrane characteristics for PEMFC performance, Ionics 28 (5) (2022) 2323–2336.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3