Overview of Agglomerative Hierarchical Clustering Methods

Author:

Eric U. Oti,,Michael O. Olusola,

Abstract

Agglomerative hierarchical clustering methods are the most popular type of hierarchical clustering used to group objects in clusters based on their similarity. The methods uses a bottom-up approach and it starts clustering by treating the individual data points as a single cluster, then it is merged continuously based on similarity until it forms one big cluster containing all objects. In this paper, we reviewed eight agglomerative hierarchical clustering methods namely: single linkage method, complete linkage method, average linkage method, weighted group average method, centroid method, median method, Ward’s method and the flexible beta method; we also discussed measures of similarity and dissimilarity using quantitative data as our reference point.

Publisher

African - British Journals

Reference29 articles.

1. Ah-Pine, J. (2018). An efficient and effective generic agglomerative hierarchical clustering approach, Journal of Machine Learning Research, 19(42): 1-43.

2. Anderberg, M. R. (1973). Cluster Analysis for Applications. Academic Press, New York.

3. Everitt, B. S. (1993). Cluster Analysis, 3rd Edition. New York, Toronto: Halsted Press.

4. Everitt, B. S., Landau, S., Leese, M., and Stahl, D. (2011). Cluster Analysis, 5th Edition. John Wiley and Sons.

5. Florek, K., Lukaszewicz, J., Steinhaus, H. and Zubrzycki, S. (1051). Sur la liaison et la division des points d’un ensemble fini. Colloquium Mathematicum. 2:282-285.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3