Artificial Intelligence for Predictive Maintenance of Armoured Fighting Vehicles Engine

Author:

Narayanan Lt Gen TSAORCID, ,Padhy Dr Suresh Chandra,

Abstract

Armoured Fighting Vehicles (AFVs) also called as Tanks play a critical role in modern warfare, providing mobility, protection and firepower on the battlefield. However, maintaining these complex machines and ensuring their operational readiness is a significant challenge for military organizations. Traditional maintenance practices are often reactive, resulting in unexpected failures, increased downtime, and operational inefficiencies. This paper focuses on the application of Artificial Intelligence (AI) for predictive maintenance of Armoured Fighting Vehicles. By harnessing the power of AI algorithms and advanced data analytics, predictive maintenance aims to anticipate and address potential equipment failures before they occur. This proactive approach enables military organizations to optimize resource allocation, improve operational planning and extend the lifespan of AFVs. The integration of AI in predictive maintenance involves collecting and analysing data from various sensors installed on the AFV engine. These sensors monitor key parameters, such as engine performance, temperature, vibration and fluid levels to detect anomalies and deviations from normal operating conditions. AI algorithms process this data, utilizing machine learning techniques to identify patterns, correlations, and potential failure indicators. The benefits of AI-based predictive maintenance for AFVs are multifaceted. Firstly, it enhances equipment readiness by reducing unexpected failures and maximizing operational availability. Secondly, it enables optimized resource allocation, ensuring that maintenance activities are scheduled efficiently, minimizing downtime, and improving overall operational efficiency. Thirdly, the predictive capabilities of AI help military planners in better decision-making allowing for improved mission planning and execution. However, the successful implementation of AI for predictive maintenance of AFV engine requires overcoming several challenges. These include data collection and integration from diverse sensors, ensuring data accuracy and quality, establishing robust communication infrastructure, and addressing cyber security concerns to protect sensitive vehicle data. This paper underscores the growing importance of AI in revolutionizing maintenance practices for Armoured Fighting Vehicles. By shifting from reactive maintenance to predictive strategies, military organizations can enhance their operational capabilities, reduce costs, and ensure the optimal performance and longevity of their AFV fleet.

Publisher

Lattice Science Publication (LSP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Interface Development based on Internet of Things Approach for Smart Predictive Maintenance implementation: Case of Diesel Engine;2024 International Conference on Circuit, Systems and Communication (ICCSC);2024-06-28

2. Human Deep Neural Networks with Artificial Intelligence and Mathematical Formulas;International Journal of Emerging Science and Engineering;2024-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3