FRAME STRUCTURE DESIGN AND FINITE ELEMENT ANALYSIS OF CORN COMBINE HARVESTER FOR HILLS AND MOUNTIANS

Author:

ZHAO Zhu1,WANG Zhongnan2,ZHAO Bintong3,SONG Yuqiu3,XIN Mingjin3

Affiliation:

1. College of Engineering, Shenyang Agricultural University, Shenyang / China, Liaoning Agricultural Technical College, Yingkou / China

2. Liaoning Agricultural Technical College, Yingkou / China

3. College of Engineering, Shenyang Agricultural University, Shenyang / China

Abstract

In view of high center of gravity and poor stability of traditional corn harvesters, a corn combine harvester frame is designed for hill and mountain operations based on TRIZ theory. The frame supports engine mode of middle engine rear drive, consisting of a front frame and a rear frame. The tail of the front frame is welded under the head of the rear frame. The front frame has reduced height and increased width to allow lower center of gravity and better stability of the whole machine. The left and right longitudinal beams of the front frame have different heights to allow better trafficability of the whole machine. A 3D model is established using Solidworks software and incorporated with ANSYS software to perform finite element analysis and modal analysis on the frame. It turns out that under full-load bending and full-load torsion conditions, the frame strength and stiffness meet the mechanical performance requirements, and the frame displays fine dynamic characteristics. According to the analysis results, the frame is optimized under the goal of light weight. While the frame strength and stiffness requirements are met, the frame mass is lowered by changing the frame component thickness. After optimization, the entire frame volume is reduced by 14.27%, with mass reduced by 14.3%, and the strength and stiffness conform to the requirements, thus achieving lightweight optimization of the frame.Moreover, The stability analysis of the corn combine harvester shows the overturning angle of uphill is 45.3°, the overturning angle of downhill is 45.7°, and the overturning angle of slopel is 40.2°.

Publisher

INMA Bucharest-Romania

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3