RELATIONSHIP BETWEEN SOIL MOVEMENT AND POWER CONSUMPTION IN A FURROW-OPENING ROTARY BLADE

Author:

Qin Kuan1,Liang Xiaolong1,Cao Chengmao1,Fang Liangfei1

Affiliation:

1. College of Engineering, Anhui Agricultural University, Anhui Province, Hefei 230036, China

Abstract

Small, handheld furrow openers using rotary blades usually have limited power, making it necessary to minimise their operating power consumption, which mainly occurs with the soil throwing and movement of rotary blades. To this end, it is necessary to investigate the power consumption of such tillage implements, particularly the relationship between their power consumption and operating conditions based on soil movement patterns. In this study, we performed a field test of a furrow-opening rotary blade using round, physical tracers to monitor soil movement. The total power consumption of the rotary blade was positively related to the operating depth of the blade but was not related to the soil movement distance. The total power consumption peaked at 6.677 kW at a forward speed of 0.3 m/s, which was negatively related to the forward speed, but positively related to the soil movement distance. At a blade rotational speed of 340 rpm, the total power consumption peaked at 4.385 kW and was positively related to the blade rotational speed and soil movement distance. Therefore, it was concluded that by decreasing the rotary blade rotational speed and operating depth and increasing the forward speed, the power consumption of the unit working length can be reduced.

Publisher

R and D National Institute for Agricultural and Food Industry Machinery - INMA Bucharest

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ENERGY CONSUMPTION EVALUATION OF ROTARY TILLER USING DYNAMIC MODELLING;INMATEH Agricultural Engineering;2022-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3