DESIGN AND ANALYSIS OF AN EFFICIENT SHOCK ABSORPTION SYSTEM FOR AN AGRICULTURAL ELECTRIC TRICYCLE

Author:

Suvac Albert1,Stefan Vasilica2,Alionte Cristian-Gabriel3,Ungureanu Liviu-Marian3

Affiliation:

1. University Politehnica of Bucharest, Bucharest / Romania; INMA Bucharest / Romania

2. INMA Bucharest / Romania

3. University Politehnica of Bucharest, Bucharest / Romania

Abstract

Ecological transport systems must be provided with efficient vibration damping systems for the comfort and safety of the user. This paper analyses a shock absorption system that can be used in an individual three-wheeled transport vehicle. The vehicle has a complex structure, with an equal size of the front and rear wheels. This uniformity of dimensions between the rear and front wheels makes it easier to travel on rough terrain and manoeuvre in a folded shape. The tricycle allows aggregation with different agricultural equipment and can be used in small farms, greenhouses, solariums, meadows, orchards, etc. In this paper we simulate several models of absorption systems with different construction parameters. The strength of the system and the efficiency of shock absorption were taken into account. The best result of the simulation test for absorption systems will be the comparison with the actual physical model used by the electric vehicle.

Publisher

R and D National Institute for Agricultural and Food Industry Machinery - INMA Bucharest

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3