DESIGN AND EXPERIMENT OF CENTRIFUGAL COLLISION TEST DEVICE FOR MILLET AND SWEET BUCKWHEAT GRAIN

Author:

Sun Jingxin1,Yang Liqin2,Xu Baohui1,Guo Yuming3,Cui Qingliang3,Zhang Yanqing3

Affiliation:

1. Department of Mechanical and Electrical Engineering, Yuncheng University, Yuncheng 044000, China

2. Planning Finance Office, Yuncheng University, Yuncheng 044000, China

3. College of Agricultural Engineering, Shanxi Agriculture University, Taigu 030801, China

Abstract

This critical collision damage force of millet and sweet buckwheat grain and the shelling force of shelled granular materials are important basic data for research of threshing and shelling technology and equipment. In order to master the linear velocity and collision force of grain with different moisture content when collision damage occurs, a centrifugal collision test device is designed. Based on the dynamic and kinematic analysis of grain in the centrifugal rotary table, the collision force between grain and steel plate was measured by PVDF piezoelectric pressure sensor and data acquisition system. The results showed that: under the same moisture content, the higher the rotational speed, the higher the grain crushing rate; at the same rotational speed, with the increase of moisture content, the crushing rate first decreased and then increased. When the moisture content of Jingu-21 and Yuqiao-4 is 19.7% and 17.8%, respectively, the grain crushing rate was the lowest. In terms of the anti-collision ability of grain, the optimum moisture content of threshing is between 19.7% and 21% for millet. For sweet buckwheat, the optimum moisture content of threshing is 17.8% ~19%, while the optimum moisture content of shelling by centrifugal sheller is about 11%. The faster the rotational speed of centrifugal rotary table is, the greater the linear speed of grain is, and the greater the collision force is. When the linear velocity of grain was 8.32 m/s and 11.30 m/s respectively, the millet grain moisture content was 11.1% and 20.9% respectively, damage began to appear, and the corresponding collision force was about 5.51 N and 10.6 N, respectively. When the linear velocity of grain was 8.32 m/s and 11.30m/s respectively, and the moisture content was 11.1% and 22.8% of the sweet buckwheat grain respectively, damage began to appear, the corresponding collision force was about 8.92 N and 12.79 N, respectively. When the rotating speed of rotary table was 910 r/min, the linear speed of grain was 27.05 m/s, the crushing rate of millet and sweet buckwheat grain in harvest period were 56.30% and 63.76%, respectively, and the crushing rate of millet and buckwheat grain with 11.1% moisture content were 86.27% and 89.4%, respectively. The research results can provide theoretical basis for design and optimization of millet and sweet buckwheat combine harvester, threshing device and shelling device.

Publisher

INMA Bucharest-Romania

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3