Affiliation:
1. Xinxiang Vocational and Technical College, Xinxiang, Henan, 453006, China
Abstract
Currently, drones have been gradually applied in the field of agriculture, and have been widely used in various types of agricultural aerial operations such as precision sowing, pesticide spraying, and vegetation detection. The use of agricultural UAVs for pesticide spraying has become an important task in the agricultural plant protection process. However, in the crop spraying process of agricultural UAVs, it is necessary to traverse multiple spray points and plan obstacle avoidance paths, which greatly affects the efficiency of agricultural UAV crop spraying operations. To address the above issues, traditional particle swarm optimization (PSO) algorithms have strong solving capabilities, but they are prone to falling into local optima. Therefore, this study proposes an improved PSO algorithm combined with the A* algorithm, which introduces a nonlinear convergence factor balancing algorithm for global search and local development capabilities in the traditional PSO algorithm, and adopts population initialization to enhance population diversity, so that the improved PSO algorithm has stronger model solving capabilities. This study designs two scenarios for agricultural UAV crop spraying path planning: one without obstacles and one with obstacles. Experimental simulation results show that using the PSO algorithm to solve the obstacle-free problem and then using the A* algorithm to correct the path obstructed by obstacles in the obstacle scenario, the agricultural UAV crop spraying trajectory planning based on the PSO-A* algorithm is real and effective. This research can provide theoretical basis for agricultural plant protection and solve the premise of autonomous operation of UAVs.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献