AGRICULTURAL UAV CROP SPRAYING PATH PLANNING BASED ON PSO-A* ALGORITHM

Author:

FAN Lijuan1

Affiliation:

1. Xinxiang Vocational and Technical College, Xinxiang, Henan, 453006, China

Abstract

Currently, drones have been gradually applied in the field of agriculture, and have been widely used in various types of agricultural aerial operations such as precision sowing, pesticide spraying, and vegetation detection. The use of agricultural UAVs for pesticide spraying has become an important task in the agricultural plant protection process. However, in the crop spraying process of agricultural UAVs, it is necessary to traverse multiple spray points and plan obstacle avoidance paths, which greatly affects the efficiency of agricultural UAV crop spraying operations. To address the above issues, traditional particle swarm optimization (PSO) algorithms have strong solving capabilities, but they are prone to falling into local optima. Therefore, this study proposes an improved PSO algorithm combined with the A* algorithm, which introduces a nonlinear convergence factor balancing algorithm for global search and local development capabilities in the traditional PSO algorithm, and adopts population initialization to enhance population diversity, so that the improved PSO algorithm has stronger model solving capabilities. This study designs two scenarios for agricultural UAV crop spraying path planning: one without obstacles and one with obstacles. Experimental simulation results show that using the PSO algorithm to solve the obstacle-free problem and then using the A* algorithm to correct the path obstructed by obstacles in the obstacle scenario, the agricultural UAV crop spraying trajectory planning based on the PSO-A* algorithm is real and effective. This research can provide theoretical basis for agricultural plant protection and solve the premise of autonomous operation of UAVs.

Publisher

INMA Bucharest-Romania

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3