Optimized jk-nearest neighbor based online signature verification and evaluation of the main parameters

Author:

Saleem MohammadORCID,Kovari BenceORCID

Abstract

In this paper, we propose an enhanced jk-nearest neighbor (jk-NN) classifier for online signature verification. After studying the algorithm's main parameters, we use four separate databases to present and evaluate each algorithm parameter. The results show that the proposed method can increase the verification accuracy by 0.73-10% compared to a traditional one class k-NN classifier. The algorithm has achieved reasonable accuracy for different databases, a 3.93% error rate when using the SVC2004 database, 2.6% for MCYT-100 database, 1.75% for the SigComp'11 database, and 6% for the SigComp'15 database.The proposed algorithm uses specifically chosen parameters and a procedure to pick the optimal value for K using only the signer's reference signatures, to build a practical verification system for real-life scenarios where only these signatures are available. By applying the proposed algorithm, the average error achieved was 8% for SVC2004, 3.26% for MCYT-100, 13% for SigComp'15, and 2.22% for SigComp'11.

Publisher

AGHU University of Science and Technology Press

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Computer Vision and Pattern Recognition,Modelling and Simulation,Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Systematic evaluation of pre-processing approaches in online signature verification;Intelligent Decision Technologies;2023-07-31

2. Online Signature Verification Using Logistic Regression;2023 9th International Conference on Control, Decision and Information Technologies (CoDIT);2023-07-03

3. Locally Weighted Enhanced DTW Based Online Signature Verification;2022 IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON);2022-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3