Author:
Mohmmed Jabbar Hussein,Tawfik Mauwafak Ali,Atiyah Qasim Abbas
Abstract
This study proposes an analytical solution of natural frequencies for an inclined fixed supported Euler-Bernoulli pipe containing the flowing fluid subjected to thermal loads. The integral transform technique is employed to obtain the spatial displacement-time domain response of the pipe-fluid system. Then, a closed-form analytical expression is presented. The effects of various geometric and system parameters on the vibration characteristics of pipe-fluid system with different flow velocities are discussed. The results illustrate that the proposed analytical solution agrees with the solutions achieved in previous works. The proposed model predicts that the pipe loses the stability by divergence with the increasing flow velocity. It is evident that the influences of inclination angle and temperature variation are dramatically increased at a higher aspect ratio. Additionally, it is demonstrated that the temperature variation becomes a more harmful effect than the internal fluid velocity on the stability of the pipe at elevated temperature.
Publisher
Taiwan Association of Engineering and Technology Innovation
Subject
Management of Technology and Innovation,General Engineering,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,General Computer Science
Reference33 articles.
1. M. P. Païdoussis, Fluid-Structure Interactions: Slender Structures and Axial Flow, 2nd ed., London: Academic Press, 2014.
2. V. Olunloyo, C. Osheku, and P. Olayiwola, “Concerning the Effect of a Viscoelastic Foundation on the Dynamic Stability of a Pipeline System Conveying an Incompressible Fluid,” Journal of Applied and Computational Mechanics, vol. 2, no. 2, pp. 96-117, 2016.
3. G. W. Housner, “Bending Vibration of a Pipe Line Containing Flowing Fluid,” Journal of Applied Mechanics, vol. 19, no. 2, pp. 205-208, June 1952.
4. R. A. Stein and M. W. Tobriner, “Vibration of Pipes Containing Flowing Fluids,” Journal of Applied Mechanics, vol. 37, no. 4, pp. 906-916, December 1970.
5. M. P. Païdoussis, “Flutter of Conservative Systems of Pipes Conveying Incompressible Fluid,” Journal of Mechanical Engineering Science, vol. 17, no. 1, pp. 19-25, February 1975.