Phytofabrication of silver nanoparticles using callus extracts of natural tetraploid Trifolium pratense L. and its bioactivities

Author:

KARAHAN Havva1ORCID,TETİK Nurten2ORCID,ÇÖLGEÇEN Hatice1ORCID

Affiliation:

1. ZONGULDAK BÜLENT ECEVİT ÜNİVERSİTESİ

2. YILDIZ TEKNİK ÜNİVERSİTESİ

Abstract

One of the main subjects of plant biotechnology is plant tissue culture and in recent years is considered a possible approach model for green and eco-friendly biosynthesis of nanoparticles. This study aimed to present calli produced from the natural tetraploid Trifolium pratense L. containing high amounts of phenolic compounds and glycosidic bioactive macromolecules and the biosynthesis of silver nanoparticles from calli. Combinatorial optimization of silver nanoparticles was achieved for the first time in this study, thanks to the stabilizing and reducing properties of hypocotyl, apical meristem, and epicotyl derived callus extracts of the natural tetraploid T. pratense L. biosynthesized nanoparticles from three different callus extracts. Callus extracts were used to create different experiments with AgNO3 at various concentrations (0.16, 0.5, 0.84, 1.18, 1.52 and 1.96 mg L-1), different temperatures (40, 50, 60, 70, 80, 90, 100°C), and different pH levels (5, 7, 10) to carry out the biosynthesis of AgNPs. Biologically synthesized AgNPs were easily monitored by color change in ultraviolet and UV-Vis spectroscopy proved to be a fast and simple method. Also, TEM, XRD, and FTIR analyses were done to characterize and confirm the formation of crystalline nanoparticles. It was determined that antibacterial activity inhibition was achieved by using the Agar-well diffusion method for antibacterial activity measurements on Gram-positive Staphylococcus aureus ATCC 25923 and Gram-negative Escherichia coli CECT 4972 bacteria. Biosynthesized AgNPs were observed in the wavelength range of 400-500 nm in the UV-VIS spectrum. TEM analysis demonstrated the size and shape of biosynthesized silver nanoparticles under different conditions. It was observed that the smaller silver nanoparticles were spherical and the larger silver nanoparticles were triangular, elliptical, and spherical shape. The XRD analysis proved the presence of Ag0 in nanoparticles and showed crystal structure for silver nanoparticles. By FTIR analysis, O-H hydroxyl groups of functional groups on the AgNP surface, H-linked OH stretching, C-H stretching, -CH stretching of -CH2 and -CH3 functional groups, C-N and carboxylate, aliphatic phosphate and primary amine stretching were expressed. Biosynthesized silver nanoparticles showed antibacterial activity against Gram-positive S. aureus ATCC 25923 bacteria, AgNP hypocotyl (1.7mm), AgNP-epicotyl (1.1mm) against Gram-negative E. coli CECT 4972 bacteria. Among the hypocotyl, apical meristem, and epicotyl callus cultures, the highest antioxidant activity was observed in the AgNPs obtained from hypocotyl-concentration experiments, with a DPPH radical activity of 52% and an ABTS radical activity of 68%. In conclusion, these findings underscore the potential of biotechnological strategies in green nanotechnology, which can be offered for developing metal nanoparticles with potential biomedicine and biotechnology applications.

Publisher

Frontiers in Life Sciences and Related Technologies

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3