Estimation of surface depression storage capacity from random roughness and slope

Author:

Mohamed AM Abd Elbasit ,Majed M Abu-Zreig ,Chandra SP Ojha ,Hiroshi Yasuda ,Liu Gang

Abstract

Depression storage capacity (DSC) models found in the literature were developed using statistical regression for relatively large soil surface roughness and slope values resulting in several fitting parameters. In this research, we developed and tested a conceptual model to estimate surface depression storage having small roughness values usually encountered in rainwater harvesting micro-catchments and bare soil in arid regions with only one fitting parameter. Laboratory impermeable surfaces of 30 x 30 cm2 were constructed with 4 sizes of gravel and mortar resulting in random roughness values ranging from 0.9 to 6.3 mm. A series of laboratory experiments were conducted under 9 slope values using simulated rain. Depression storage for each combination of relative roughness and slope was estimated by the mass balance approach.  Analysis of experimental results indicated that the developed linear model between DSC and the square root of the ratio of random roughness (RR) to slope was significant at p < 0.001 and coefficient of determination R2 = 0.90. The developed model predicted depression storage of small relief at higher accuracy compared to other models found in the literature. However, the model is based on small-scale laboratory plots and further testing in the field will provide more insight for practical applications.

Publisher

Academy of Science of South Africa

Subject

Management, Monitoring, Policy and Law,Waste Management and Disposal,Water Science and Technology,Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3