Development of unsupported IrO2 nano-catalysts for polymer electrolyte membrane water electrolyser applications

Author:

Karels Simoné1ORCID,Felix Cecil1ORCID,Pasupathi Sivakumar1ORCID

Affiliation:

1. South African Institute for Advanced Materials Chemistry (SAIAMC), University of the Western Cape, Cape Town, South Africa

Abstract

IrO2 is a current state-of-the-art catalyst for polymer electrolyte membrane water electrolyser (PEMWE) applications due to its high stability during the oxygen evolution reaction (OER). However, its activity needs to be significantly improved to justify the use of such a high-cost material. In this study, the activity of the IrO2 catalyst was improved by optimising and comparing two synthesis methods: the modified Adams fusion method (MAFM) and the molten salt method (MSM). Optimum OER performances of the IrO2 catalysts synthesised with the two synthesis methods were obtained at different temperatures. For the MAFM, a synthesis temperature of 350 °C produced the IrO2 catalyst with an overpotential of 279 mV and the highest OER stability of ~ 82 h at 10 mAcm−2. However, for the MSM, the lowest overpotential of 271 mV was observed for IrO2 synthesised at 350 °C, while the highest stability of ~ 75 h was obtained for the IrO2 synthesised at 500 °C.

Funder

South African Department of Trade, Industry and Competition

Publisher

Academy of Science of South Africa

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3