The benefits of segmentation: Evidence from a South African bank and other studies

Author:

Breed Douw G.1ORCID,Verster Tanja1ORCID

Affiliation:

1. Centre for Business Mathematics and Informatics, North-West University, Potchefstroom, South Africa

Abstract

We applied different modelling techniques to six data sets from different disciplines in the industry, on which predictive models can be developed, to demonstrate the benefit of segmentation in linear predictive modelling. We compared the model performance achieved on the data sets to the performance of popular non-linear modelling techniques, by first segmenting the data (using unsupervised, semi-supervised, as well as supervised methods) and then fitting a linear modelling technique. A total of eight modelling techniques was compared. We show that there is no one single modelling technique that always outperforms on the data sets. Specifically considering the direct marketing data set from a local South African bank, it is observed that gradient boosting performed the best. Depending on the characteristics of the data set, one technique may outperform another. We also show that segmenting the data benefits the performance of the linear modelling technique in the predictive modelling context on all data sets considered. Specifically, of the three segmentation methods considered, the semi-supervised segmentation appears the most promising.

Publisher

Academy of Science of South Africa

Subject

General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3