Occurrence, quantification and removal of triclosan in wastewater of Umbogintwini Industrial Complex in KwaMakhutha, South Africa

Author:

Mhlongo Siyabonga A.ORCID,Sibali Linda L.ORCID,Ndibewu Peter P.ORCID

Abstract

We report on the detection of an organic pollutant mostly found in local streams and wastewater treatment plants, specifically on triclosan detected in the Umbogintwini Industrial Complex (UIC), located on the south coast of Durban, KwaZulu-Natal in South Africa. Triclosan was successfully extracted from effluent samples using molecularly imprinted membrane adsorbents (MIMs) before quantification and removal using high-performance liquid chromatography (HPLC). This was done through fabrication of a polyvinylidene fluoride polymer using selective microparticles and molecularly imprinted polymers by means of phase inversion and an immersion precipitation method which results in enhanced hydrophilicity and membrane performance. The optimisation of experimental parameters – i.e. contact time and sample size – was performed through different stages of analysis. The synthesised MIMs exhibited an outstanding adsorption efficiency of 97% for triclosan in relation to those of non-imprinted membranes (NIMs) and pristine membranes at 92% and 88%, respectively. The analytical method employed had limits of detection and quantification of 0.21 and 0.69 parts per billion (ppb or μg/L) in wastewater effluent, respectively. The obtained efficiency results show great potential for future use of membrane and molecular imprinting technology, and that MIMs can be adopted as adsorbents for water treatment. The fast and highly selective methodology presented in this work could also be employed for the examination of persistent organic pollutants in the future to combat water scarcity in South Africa. Significance: The key finding of this work is the incorporation of molecularly imprinted polymers with a membrane adsorbent to improve the performance of the membrane. An unexpected finding was the existence of pollutants like triclosan in water within the boundaries of the KwaMakhutha community, near the human settlement. Among the MIMs, NIMs and bare membranes, higher removal efficiencies were displayed by the synthesised MIMs against the discovered pollutants. This work could open doors for advanced research in the community.

Funder

National Research Foundation

Publisher

Academy of Science of South Africa

Subject

General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3