Copper-Induced In Vivo Gene Amplification in Budding Yeast

Author:

Wang Junyi1,Song Jingya1,Fan Cong1,Duan Jiahao1,He Kaiyuan1,Yuan Jifeng123

Affiliation:

1. State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China.

2. Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Fujian 361005, China.

3. Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China.

Abstract

In the biotechnological industry, multicopy gene integration represents an effective strategy to maintain a high-level production of recombinant proteins and to assemble multigene biochemical pathways. In this study, we developed copper-induced in vivo gene amplification in budding yeast for multicopy gene expressions. To make copper as an effective selection pressure, we first constructed a copper-sensitive yeast strain by deleting the CUP1 gene encoding a small metallothionein-like protein for copper resistance. Subsequently, the reporter gene fused with a proline–glutamate–serine–threonine-destabilized CUP1 was integrated at the δ sites of retrotransposon (Ty) elements to counter the copper toxicity at 100 μM Cu 2+ . We further demonstrated the feasibility of modulating chromosomal rearrangements for increased protein expression under higher copper concentrations. In addition, we also demonstrated a simplified design of integrating the expression cassette at the CUP1 locus to achieve tandem duplication under high concentrations of copper. Taken together, we envision that this method of copper-induced in vivo gene amplification would serve as a robust and useful method for protein overproduction and metabolic engineering applications in budding yeast.

Publisher

American Association for the Advancement of Science (AAAS)

Reference59 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3