Ultrafast Miniature Robotic Swimmers with Upstream Motility

Author:

Wang Yibin12,Chen Hui12,Law Junhui3,Du Xingzhou12,Yu Jiangfan12

Affiliation:

1. School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China.

2. Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China.

3. Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada.

Abstract

With the development of materials science and micro–nano fabrication techniques, miniature soft robots at millimeter or submillimeter size can be manufactured and actuated remotely. The small-scaled robots have the unique capability to access hard-to-reach regions in the human body in a noninvasive manner. To date, it is still challenging for miniature robots to accurately move in the diverse and dynamic environments in the human body (e.g., in blood flow). To effectively locomote in the vascular system, miniature swimmers with upstream swimming capability are required. Herein, we design and fabricate a miniature robotic swimmer capable of performing ultrafast swimming in a fluidic environment. The maximum velocity of the swimmer in water is 30 cm/s, which is 60 body lengths. Moreover, in a tubular environment, the swimmer can still obtain a swimming velocity of 17 cm/s. The swimmer can also perform upstream swimming in a tubular environment with a velocity of 5 cm/s when the flow speed is 10 cm/s. The ultrasound-guided navigation of the swimmer in a phantom mimicking a blood vessel is also realized. This work gives insight into the design of agile undulatory milliswimmers for future biomedical applications.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Applied Mathematics,General Mathematics

Reference40 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3