SDCBench: A Benchmark Suite for Workload Colocation and Evaluation in Datacenters

Author:

Yang Yanan1ORCID,Kong Xiangyu2,Zhao Laiping1ORCID,Li Yiming1,Zhang Huanyu1,Li Jie1,Qi Heng2,Li Keqiu1

Affiliation:

1. Tianjin Key Lab. of Advanced Networking, College of Intelligence and Computing, Tianjin University, China

2. School of Computer Science and Technology, Dalian University of Technology, Dalian, China

Abstract

Colocating workloads are commonly used in datacenters to improve server utilization. However, the unpredictable application performance degradation caused by the contention for shared resources makes the problem difficult and limits the efficiency of this approach. This problem has sparked research in hardware and software techniques that focus on enhancing the datacenters’ isolation abilities. There is still lack of a comprehensive benchmark suite to evaluate such techniques. To address this problem, we present SDCBench, a new benchmark suite that is specifically designed for workload colocation and characterization in datacenters. SDCBench includes 16 applications that span a wide range of cloud scenarios, which are carefully selected from the existing benchmarks using the clustering analysis method. SDCBench implements a robust statistical methodology to support workload colocation and proposes a concept of latency entropy for measuring the isolation ability of cloud systems. It enables cloud tenants to understand the performance isolation ability in datacenters and choose their best-fitted cloud services. For cloud providers, it also helps them to improve the quality of service to increase their revenues. Experimental results show that SDCBench can simulate different workload colocation scenarios by generating pressures on multidimensional resources with simple configurations. We also use SDCBench to compare the latency entropies in public cloud platforms such as Huawei Cloud and AWS Cloud and a local prototype system FlameCluster-II; the evaluation results show FlameCluster-II has the best performance isolation ability over these three cloud systems, with 0.99 of experience availability and 0.29 of latency entropy.

Funder

CCF-Huawei Populus euphratica Innovation Research Funding

National Natural Science Foundation of China

National Basic Research Program of China

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3