Affiliation:
1. Beijing Institute of Control Engineering, Beijing 100190, China
2. Science and Technology on Space Intelligent Control Laboratory, Beijing 100190, China
Abstract
To achieve the goal of collecting lunar samples and return to the Earth for the Chang’E-5 spacecraft, the lander and ascender module (LAM) of the Chang’E-5 spacecraft successfully landed on the lunar surface on 1 Dec., 2020. The guidance, navigation, and control (GNC) system is one of the critical systems to perform this task. The GNC system of previous missions, Chang’E-3 and Chang’E-4, provides the baseline design for the Chang’E-5 LAM, and the new characteristics of the LAM, like larger mass and liquid sloshing, also bring new challenges for the GNC design. The GNC design for the descent and landing is presented in this paper. The guidance methods implemented in the powered descent are presented in detail for each phase. Propellant consumption and hazard avoidance should be particularly considered in the design. A reconfigurable attitude control is adopted which consists of the quaternion partition control, phase and gain stabilization filter, and dual observer. This controller could provide fast attitude maneuver and better system robustness. For the navigation, an intelligent heterogeneous sensor data fusion method is presented, and it is applied for the inertial measurement unit and velocimeter data. Finally, the flight results of the LAM are shown. Navigation sensors were able to provide valid measurement data during descent, and the thrusters and the main engine operated well as expected. Therefore, a successful soft lunar landing was achieved by the LAM.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献