Optimization of a Dry Peeling System for Tomatoes Using Approximate Solutions

Author:

METALLO Antonio1ORCID

Affiliation:

1. Università degli Studi di Salerno

Abstract

In recent years tomatoes have been peeled using steam and lye. Both are costlier, less environmentally friendly and highly polluting techniques. Thus, more sustainable alternatives should be sought after. Among these alternatives is radiative heating. To appropriately design the system for dry peeling, several typical operational characteristics of the process in issue must be estimated. The analytical model presented allows estimates to be made through closed-form relationships between the parameters involved. The analysis is based on the use of an appropriate theoretical model, which facilitates the solution to the proposed problems. Through the approximate solution of the analytical problem, we will analyse: the angular speed Ω, the temperature fluctuations ΔT0, the process time tc. These estimates are then used to derive a specific model for a control of process. The temperature profile (through an approximate solution) associated with the process that provides the optimum peel quality was utilized as a guide for the regulation system. A control system used the code to extract a specific temperature, and based on surface tomato temperature readings, controlled a brushless motor using a logic strategy. The regulating system can adjust the rotation speed, and hence the heating intensity, even under less than perfect operating conditions in order to obtain the appropriate profile temperature. The controlled temperature profile yielded an average temperature of 66.3°C, while the reference case yielded a temperature of 67°C. Additionally, it was found that the temperature inaccuracy decreased with each rotation, ranging from 2.5 °C at 2π to 0.3 °C at 16π. As a result, the peeling procedure is standardized in time, temperature, and quality.

Publisher

International Centre for Applied Thermodynamics (ICAT)

Subject

General Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3