Leaf Respiration in Light and Darkness (A Comparison of Slow- and Fast-Growing Poa Species)

Author:

Atkin O. K.1,Westbeek MHM.1,Cambridge M. L.1,Lambers H.1,Pons T. L.1

Affiliation:

1. Department of Plant Ecology and Evolutionary Biology, Utrecht University, P.O. Box 800.84, 3508 TB Utrecht, The Netherlands

Abstract

Abstract We investigated whether leaf dark respiration (nonphotorespiratory mitochondrial CO2 release) is inhibited by light in several Poa species, and whether differences in light inhibition between the species are related to differences in the rate of leaf net photosynthesis. Four lowland (Poa annua L., Poa compressa L., Poa pratensis L., and Poa trivialis L.), one subalpine (Poa alpina L.), and two alpine (Poa costiniana Vick. and Poa fawcettiae Vick.) Poa species differing in whole plant relative growth rates were grown under identical controlled conditions. Nonphotorespiratory mitochondrial CO2 release in the light (Rd) was estimated according to the Laisk method. Photosynthesis was measured at ambient CO2 partial pressure (35 Pa) and 500 [mu]mol photons m-2 s-1. The rate of photosynthesis per unit leaf mass was positively correlated with the relative growth rate, with the slow-growing alpine Poa species exhibiting the lowest photosynthetic rates. Rates of both Rd and respiration in darkness were also substantially lower in the alpine species. Nonphotorespiratory CO2 release in darkness was higher than Rd in all species. However, despite some variation between the species in the level of light inhibition of respiration, no relationship was observed between the level of inhibition and the rate of photosynthesis. Similarly, the level of inhibition was not correlated with the relative growth rate. Our results support the suggestion that rates of leaf respiration in the light are closely associated with rates in darkness.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3