Metabolic Control of Avocado Fruit Growth (Isoprenoid Growth Regulators and the Reaction Catalyzed by 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase)

Author:

Cowan A. K.1,Moore-Gordon C. S.1,Bertling I.1,Wolstenholme B. N.1

Affiliation:

1. Department of Horticultural Science, University of Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa

Abstract

Abstract The effect of isoprenoid growth regulators on avocado (Persea americana Mill. cv Hass) fruit growth and mesocarp 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity was investigated during the course of fruit ontogeny. Both normal and small-fruit phenotypes were used to probe the interaction between the end products of isoprenoid biosynthesis and the activity of HMGR in the metabolic control of avocado fruit growth. Kinetic analysis of the changes in both cell number and size revealed that growth was limited by cell number in phenotypically small fruit. In small fruit a 70% reduction in microsomal HMGR activity was associated with an increased mesocarp abscisic acid (ABA) concentration. Application of mevastatin, a competitive inhibitor of HMGR, reduced the growth of normal fruit and increased mesocarp ABA concentration. These effects were reversed by co-treatment of fruit with mevalonic acid lactone, isopentenyladenine, or N-(2-chloro-4-pyridyl)-N-phenylurea, but were not significantly affected by either gibberellic acid or stigmasterol. However, stigmasterol appeared to partially restore fruit growth when co-injected with mevastatin in either phase II or III of fruit growth. In vivo application of ABA reduced fruit growth and mesocarp HMGR activity and accelerated fruit abscission, effects that were reversed by co-treatment with isopentenyladenine. Together, these observations indicate that ABA accumulation down-regulates mesocarp HMGR activity and fruit growth, and that in situ cytokinin biosynthesis modulates these effects during phase I of fruit ontogeny, whereas both cytokinins and sterols seem to perform this function during the later phases.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3