Evaluation of Functional Interaction between K+Channel α- and β-Subunits and Putative Inactivation Gating by Co-Expression in Xenopus laevisOocytes

Author:

Zhang Xiao1,Ma Jiong1,Berkowitz Gerald A.1

Affiliation:

1. Department of Plant Science, University of Connecticut, Storrs, Connecticut 06269–4067

Abstract

Abstract Animal K+ channel α- (pore-forming) subunits form native proteins by association with β-subunits, which are thought to affect channel function by modifying electrophysiological parameters of currents (often by inducing fast inactivation) or by stabilizing the protein complex. We evaluated the functional association of KAT1, a plant K+ channel α-subunit, and KAB1 (a putative homolog of animal K+channel β-subunits) by co-expression in Xenopus laevisoocytes. Oocytes expressing KAT1 displayed inward-rectifying, non-inactivating K+ currents that were similar in magnitude to those reported in prior studies. K+ currents recorded from oocytes expressing both KAT1 and KAB1 had similar gating kinetics. However, co-expression resulted in greater total current, consistent with the possibility that KAB1 is a β-subunit that stabilizes and therefore enhances surface expression of K+ channel protein complexes formed by α-subunits such as KAT1. K+ channel protein complexes formed by α-subunits such as KAT1 that undergo (voltage-dependent) inactivation do so by means of a “ball and chain” mechanism; the ball portion of the protein complex (which can be formed by the N terminus of either an α- or β-subunit) occludes the channel pore. KAT1 was co-expressed in oocytes with an animal K+ channel α-subunit (hKv1.4) known to contain the N-terminal ball and chain. Inward currents through heteromeric hKv1.4:KAT1 channels did undergo typical voltage-dependent inactivation. These results suggest that inward currents through K+ channel proteins formed at least in part by KAT1 polypeptides are capable of inactivation, but the structural component facilitating inactivation is not present when channel complexes are formed by either KAT1 or KAB1 in the absence of additional subunits.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3