The Role of Plastocyanin in the Adjustment of the Photosynthetic Electron Transport to the Carbon Metabolism in Tobacco

Author:

Schöttler Mark Aurel1,Kirchhoff Helmut1,Weis Engelbert1

Affiliation:

1. Institut für Botanik, Westfälische Wilhelms-Universität, 48 149 Munster, Germany

Abstract

Abstract We investigated adaptive responses of the photosynthetic electron transport to a decline in the carbon assimilation capacity. Leaves of different ages from wild-type tobacco (Nicotiana tabacum) L. var Samsun NN and young mature leaves of tobacco transformants with impaired photoassimilate export were used. The assimilation rate decreased from 280 in young mature wild-type leaves to below 50 mmol electrons mol chlorophyll−1 s−1 in older wild-type leaves or in transformants. The electron transport capacity, measured in thylakoids isolated from the different leaves, closely matched the leaf assimilation rate. The numbers of cytochrome (cyt)-bf complexes and plastocyanin (PC) decreased with the electron transport and assimilation capacity, while the numbers of photosystem I (PSI), photosystem II, and plastoquinone remained constant. The PC to PSI ratio decreased from five in leaves with high assimilation rates, to values below one in leaves with low assimilation rates, and the PC versus flux correlation was strictly proportional. Redox kinetics of cyt-f, PC, and P700 suggest that in leaves with low electron fluxes, PC is out of the equilibrium with P700 and cyt-f and the cyt-f reoxidation rate is restricted. It is concluded that the electron flux is sensitive to variations in the number of PC, relative to PSI and cyt-bf, and PC, in concert with cyt-bf, is a key component that adjusts to control the electron transport rate. PC dependent flux control may serve to adjust the electron transport rate under conditions where the carbon assimilation is diminished and thereby protects PSI against over-reduction and reactive oxygen production.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3