Origin of the Cytoplasmic pH Changes during Anaerobic Stress in Higher Plant Cells. Carbon-13 and Phosphorous-31 Nuclear Magnetic Resonance Studies

Author:

Gout Elisabeth1,Boisson Anne-Marie1,Aubert Serge1,Douce Roland1,Bligny Richard1

Affiliation:

1. Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherche 5019 (Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Joseph Fourier), Département de Biologie Moléculaire et Structurale, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9, France

Abstract

Abstract We tested the contribution of nucleoside triphosphate (NTP) hydrolysis, ethanol, and organic acid syntheses, and H+-pump ATPases activity in the acidosis of anoxic sycamore (Acer pseudoplatanus) plant cells. Culture cells were chosen to alter NTP pools and fermentation with specific nutrient media (phosphate [Pi]-deprived and adenine- or glycerol-supplied). In vivo 31P- and 13C-nuclear magnetic resonance (NMR) spectroscopy was utilized to noninvasively measure intracellular pHs, Pi, phosphomonoesters, nucleotides, lactate, and ethanol. Following the onset of anoxia, cytoplasmic (cyt) pH (7.5) decreased to 6.8 within 4 to 5 min, whereas vacuolar pH (5.7) and external pH (6.5) remained stable. The NTP pool simultaneously decreased from 210 to <20 nmol g−1 cell wet weight, whereas nuceloside diphosphate, nucleoside monophosphate, and cyt pH increased correspondingly. The initial cytoplasmic acidification was at a minimum in Pi-deprived cells containing little NTP, and at a maximum in adenine-incubated cells showing the highest NTP concentration. Our data show that the release of H+ ions accompanying the Pi-liberating hydrolysis of NTP was the principal cause of the initial cyt pH drop and that this cytoplasmic acidosis was not overcome by H+ extrusion. After 15 min of anoxia, a partial cyt-pH recovery observed in cells supplied with Glc, but not with glycerol, was attributed to the H+-consuming ATP synthesis accompanying ethanolic fermentation. Following re-oxygenation, the cyt pH recovered its initial value (7.5) within 2 to 3 min, whereas external pH decreased abruptly. We suggest that the H+-pumping ATPase located in the plasma membrane was blocked in anoxia and quickly reactivated after re-oxygenation.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3