Affiliation:
1. Department of Biology, University of California at San Diego, La Jolla, California 92093–0116
Abstract
Abstract
To further understand how membrane proteins are sorted in the secretory system, we devised a strategy that involves the expression of a membrane-anchored yeast invertase in transgenic plants. The construct consisted of a signal peptide followed by the coding region of yeast invertase and the transmembrane domain and cytoplasmic tail of calnexin. The substitution of a lysine near the C terminus of calnexin with a glutamic acid residue ensured progression through the secretory system rather than retention in or return to the endoplasmic reticulum. In the transformed plants, invertase activity and a 70-kD cross-reacting protein were found in the vacuoles. This yeast invertase had plant-specific complex glycans, indicating that transport to the vacuole was mediated by the Golgi apparatus. The microsomal fraction contained a membrane-anchored 90-kD cross-reacting polypeptide, but was devoid of invertase activity. Our results indicate that this membrane-anchored protein proceeds in the secretory system beyond the point where soluble proteins are sorted for secretion, and is detached from its membrane anchor either just before or just after delivery to the vacuole.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献