Functional Coexpression of the Mitochondrial Alternative Oxidase and Uncoupling Protein Underlies Thermoregulation in the Thermogenic Florets of Skunk Cabbage

Author:

Onda Yoshihiko1,Kato Yoshiaki1,Abe Yukie1,Ito Takanori1,Morohashi Miyuki1,Ito Yuka1,Ichikawa Megumi1,Matsukawa Kazushige1,Kakizaki Yusuke1,Koiwa Hiroyuki1,Ito Kikukatsu1

Affiliation:

1. United Graduate School of Agricultural Science (Y.O., M.M., K.M.), and Cryobiosystem Research Center, Faculty of Agriculture (Y.K., Y.A., T.I., Y.I., M.I., Y.K., K.I.), Iwate University, Iwate 020–8550, Japan; and Research Institute of Bio-System Informatics, Tohoku Chemical Co., Ltd., Iwate 020–0022, Japan (H.K.)

Abstract

Abstract Two distinct mitochondrial energy dissipating systems, alternative oxidase (AOX) and uncoupling protein (UCP), have been implicated as crucial components of thermogenesis in plants and animals, respectively. To further clarify the physiological roles of AOX and UCP during homeothermic heat production in the thermogenic skunk cabbage (Symplocarpus renifolius), we identified the thermogenic cells and performed expression and functional analyses of these genes in this organism. Thermographic analysis combined with in situ hybridization revealed that the putative thermogenic cells surround the stamens in the florets of skunk cabbage and coexpress transcripts for SrAOX, encoding Symplocarpus AOX, and SrUCPb, encoding a novel UCP that lacks a fifth transmembrane segment. Mitochondria isolated from the thermogenic florets exhibited substantial linoleic acid (LA)-inducible uncoupling activities. Moreover, our results demonstrate that LA is capable of inhibiting the mitochondrial AOX pathway, whereas the proportion of pyruvate-stimulated AOX capacity was not significantly affected by LA. Intriguingly, the protein expression levels for SrAOX and SrUCPb were unaffected even when the ambient air temperatures increased from 10.3°C to 23.1°C or from 8.3°C to 24.9°C. Thus, our results suggest that functional coexpression of AOX and UCP underlies the molecular basis of heat production, and that posttranslational modifications of these proteins play a crucial role in regulating homeothermic heat production under conditions of natural ambient temperature fluctuations in skunk cabbage.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3