Affiliation:
1. Department of Plant and Environmental Sciences, Göteborg University, SE–405 30 Gothenburg, Sweden (O.K., M.E.); Plant and Soil Science Laboratory, Department of Agricultural Sciences, Faculty of Life Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark (M.X.A.); Division of Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE–17177 Stockholm, Sw
Abstract
AbstractThe jasmonate family of phytohormones, as represented by 12-oxo-phytodienoic acid (OPDA), dinor-phytodienoic acid (dn-OPDA), and jasmonic acid in Arabidopsis (Arabidopsis thaliana), has been implicated in a vast array of different developmental processes and stress responses. Recent reports indicate that OPDA and dn-OPDA occur not only as free acids in Arabidopsis, but also as esters with complex lipids, so-called arabidopsides. Recently, we showed that recognition of the two bacterial effector proteins AvrRpm1 and AvrRpt2 induced high levels of a molecule consisting of two OPDAs and one dn-OPDA esterified to a monogalactosyl diacylglycerol moiety, named arabidopside E. In this study, we demonstrate that the synthesis of arabidopsides is mainly independent of the prokaryotic lipid biosynthesis pathway in the chloroplast, and, in addition to what previously has been reported, arabidopside E as well as an all-OPDA analog, arabidopside G, described here accumulated during the hypersensitive response and in response to wounding. We also show that different signaling pathways lead to the formation of arabidopsides during the hypersensitive response and the wounding response, respectively. However, the formation of arabidopsides during both responses is dependent on an intact jasmonate signaling pathway. Additionally, we report inhibition of growth of the fungal necrotrophic pathogen Botrytis cinerea and in planta release of free jasmonates in a time frame that overlaps with the observed reduction of arabidopside levels. Thus, arabidopsides may have a dual function: as antipathogenic substances and as storage compounds that allow the slow release of free jasmonates.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
103 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献