Characterization of SOC1’s Central Role in Flowering by the Identification of Its Upstream and Downstream Regulators

Author:

Immink Richard G.H.1,Posé David1,Ferrario Silvia1,Ott Felix1,Kaufmann Kerstin1,Valentim Felipe Leal1,de Folter Stefan1,van der Wal Froukje1,van Dijk Aalt D.J.1,Schmid Markus1,Angenent Gerco C.1

Affiliation:

1. Plant Research International, Bioscience, 6708 PB Wageningen, The Netherlands (R.G.H.I., S.F., K.K., F.L.V., S.d.F., F.v.d.W., A.D.J.v.D., G.C.A.); Consortium for Improved Plant Yield, 6700 AB Wageningen, The Netherlands (R.G.H.I., G.C.A.); Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (D.P., F.O., M.S.); and Laboratory of Molecular Biol

Abstract

AbstractThe transition from vegetative to reproductive development is one of the most important phase changes in the plant life cycle. This step is controlled by various environmental signals that are integrated at the molecular level by so-called floral integrators. One such floral integrator in Arabidopsis (Arabidopsis thaliana) is the MADS domain transcription factor SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1). Despite extensive genetic studies, little is known about the transcriptional control of SOC1, and we are just starting to explore the network of genes under the direct control of SOC1 transcription factor complexes. Here, we show that several MADS domain proteins, including SOC1 heterodimers, are able to bind SOC1 regulatory sequences. Genome-wide target gene analysis by ChIP-seq confirmed the binding of SOC1 to its own locus and shows that it also binds to a plethora of flowering-time regulatory and floral homeotic genes. In turn, the encoded floral homeotic MADS domain proteins appear to bind SOC1 regulatory sequences. Subsequent in planta analyses revealed SOC1 repression by several floral homeotic MADS domain proteins, and we show that, mechanistically, this depends on the presence of the SOC1 protein. Together, our data show that SOC1 constitutes a major hub in the regulatory networks underlying floral timing and flower development and that these networks are composed of many positive and negative autoregulatory and feedback loops. The latter seems to be crucial for the generation of a robust flower-inducing signal, followed shortly after by repression of the SOC1 floral integrator.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3