A NAC Transcription Factor Represses Putrescine Biosynthesis and Affects Drought Tolerance

Author:

Wu Hao1,Fu Bing1,Sun Peipei1,Xiao Chang1,Liu Ji-Hong1

Affiliation:

1. Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China

Abstract

Abstract Arginine decarboxylase (ADC)-mediated putrescine biosynthesis plays an important role in plant stress responses, but the transcriptional regulation of ADC in response to abiotic stress is not well understood. We isolated a NAM, ATAF1/2, and CUC (NAC) domain-containing transcription factor, PtrNAC72, from trifoliate orange (Poncirus trifoliata) by yeast one-hybrid screening. PtrNAC72, localized to the nucleus, binds specifically to the promoter of PtADC and acts as a transcriptional repressor. PtrNAC72 expression was induced by cold, drought, and abscisic acid. ADC messenger RNA abundance and putrescine levels were decreased in transgenic tobacco (Nicotiana nudicaulis) plants overexpressing PtrNAC72 but increased, compared with the wild type, in an Arabidopsis (Arabidopsis thaliana) transfer DNA insertion mutant, nac72. While transgenic tobacco lines overexpressing PtrNAC72 were more sensitive to drought, plants of the Arabidopsis nac72 mutant exhibited enhanced drought tolerance, consistent with the accumulation of reactive oxygen species in the tested genotypes. In addition, exogenous application of putrescine to the overexpression lines restored drought tolerance, while treatment with d-arginine, an ADC inhibitor, compromised the drought tolerance of nac72. Taken together, these results demonstrate that PtrNAC72 is a repressor of putrescine biosynthesis and may negatively regulate the drought stress response, at least in part, via the modulation of putrescine-associated reactive oxygen species homeostasis.

Funder

National Natural Science Foundation of China (NSFC)

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3