Affiliation:
1. Department of Biological Sciences, National University of Singapore, Kent Ridge Crescent, Singapore 119260
Abstract
Abstract
To understand the relationship between the organization of cellular water, molecular interactions, and desiccation tolerance, dielectric behaviors of water and water-plasticized biomolecules in red oak (Quercus rubra) seeds were studied during dehydration. The thermally stimulated current study showed three dielectric dispersions: (a) the relaxation of loosely-bound water and small polar groups, (b) the relaxation of tightly-bound water, carbohydrate chains, large polar groups of macromolecules, and (c) the “freezing in” of molecular mobility (glassy state). Seven discrete hydration levels (water contents of 1.40, 0.55, 0.41, 0.31, 0.21, 0.13, and 0.08 g/g dry weight, corresponding to −1.5, −8, −11, −14, −24, −74, and −195 MPa, respectively) were identified according to the changes in thermodynamic and dielectric properties of water and water-plasticized biomolecules during dehydration. The implications of intracellular water organization for desiccation tolerance were discussed. Cytoplasmic viscosity increased exponentially at water content < 0.40 g/g dry weight, which was correlated with the great relaxation slowdown of water-plasticized biomolecules, supporting a role for viscosity in metabolic shutdown during dehydration.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献