Affiliation:
1. Commonwealth Scientific and Industrial Research Organization, Plant Industry, G.P.O. Box 1600, Canberra, Australian Capital Territory 2601, Australia (L.M.T.); and
2. Laboratoire Mixte, Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique-Aventis (Unité Mixte de Recherche 1932), Aventis CropScience, 14–20 Rue Pierre Baizet Boite Postale 9163, 69263 Lyon cedex 03, France (M.D.)
Abstract
Abstract
The low sulfur amino acid content of legume seeds restricts their nutritive value for animals. We have investigated the limitations to the accumulation of sulfur amino acids in the storage proteins of narrow leaf lupin (Lupinus angustifolius) seeds. Variation in sulfur supply to lupin plants affected the sulfur amino acid accumulation in the mature seed. However, when sulfur was in abundant supply, it accumulated to a large extent in oxidized form, rather than reduced form, in the seeds. At all but severely limiting sulfur supply, addition of a transgenic (Tg) sink for organic sulfur resulted in an increase in seed sulfur amino acid content. We hypothesize that demand, or sink strength for organic sulfur, which is itself responsive to environmental sulfur supply, was the first limit to the methionine (Met) and cysteine (Cys) content of wild-type lupin seed protein under most growing conditions. In Tg, soil-grown seeds expressing a foreign Met- and Cys-rich protein, decreased pools of free Met, free Cys, and glutathione indicated that the rate of synthesis of sulfur amino acids in the cotyledon had become limiting. Homeostatic mechanisms similar to those mediating the responses of plants to environmental sulfur stress resulted in an adjustment of endogenous protein composition in Tg seeds, even when grown at adequate sulfur supply. Uptake of sulfur by lupin cotyledons, as indicated by total seed sulfur at maturity, responded positively to increased sulfur supply, but not to increased demand in the Tg seeds.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
94 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献