RNA Interference-Mediated Change in Protein Body Morphology and Seed Opacity through Loss of Different Zein Proteins

Author:

Wu Yongrui1,Messing Joachim1

Affiliation:

1. Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey 08854

Abstract

Abstract Opaque or nonvitreous phenotypes relate to the seed architecture of maize (Zea mays) and are linked to loci that control the accumulation and proper deposition of storage proteins, called zeins, into specialized organelles in the endosperm, called protein bodies. However, in the absence of null mutants of each type of zein (i.e. α, β, γ, and δ), the molecular contribution of these proteins to seed architecture remains unclear. Here, a double null mutant for the δ-zeins, the 22-kD α-zein, the β-zein, and the γ-zein RNA interference (RNAi; designated as z1CRNAi, βRNAi, and γRNAi, respectively) and their combinations have been examined. While the δ-zein double null mutant had negligible effects on protein body formation, the βRNAi and γRNAi alone only cause slight changes. Substantial loss of the 22-kD α-zeins by z1CRNAi resulted in protein body budding structures, indicating that a sufficient amount of the 22-kD zeins is necessary for maintenance of a normal protein body shape. Among different mutant combinations, only the combined βRNAi and γRNAi resulted in drastic morphological changes, while other combinations did not. Overexpression of α-kafirins, the homologues of the maize 22-kD α-zeins in sorghum (Sorghum bicolor), in the β/γRNAi mutant failed to offset the morphological alterations, indicating that β- and γ-zeins have redundant and unique functions in the stabilization of protein bodies. Indeed, opacity of the β/γRNAi mutant was caused by incomplete embedding of the starch granules rather than by reducing the vitreous zone.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Reference50 articles.

1. Ac induces homologous recombination at the maize P locus;Athma;Genetics,1991

2. Coexpression of the maize delta-zein and beta-zein genes results in stable accumulation of delta-zein in endoplasmic reticulum-derived protein bodies formed by beta-zein;Bagga;Plant Cell,1997

3. Zein synthesis in maize endosperm by polyribosomes attached to protein bodies;Burr;Proc Natl Acad Sci USA,1976

4. The biochemical basis and implications of grain strength in sorghum and maize;Chandrashekar;J Cereal Sci,1999

5. Expression of a mutant alpha-zein creates the floury2 phenotype in transgenic maize;Coleman;Proc Natl Acad Sci USA,1997

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3