Affiliation:
1. Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (H.Z.); Department of Molecular and Cellular Biology, University of Colorado, Boulder, Colorado 80309 (L.A.S.)
Abstract
AbstractWe have investigated the structural events associated with vacuole biogenesis in root tip cells of tobacco (Nicotiana tabacum) seedlings preserved by high-pressure freezing and freeze-substitution techniques. Our micrographs demonstrate that the lytic vacuoles (LVs) of root tip cells are derived from protein storage vacuoles (PSVs) by cell type-specific sets of transformation events. Analysis of the vacuole transformation pathways has been aided by the phytin-dependent black osmium staining of PSV luminal contents. In epidermal and outer cortex cells, the central LVs are formed by a process involving PSV fusion, storage protein degradation, and the gradual replacement of the PSV marker protein α-tonoplast intrinsic protein (TIP) with the LV marker protein γ-TIP. In contrast, in the inner cortex and vascular cylinder cells, the transformation events are more complex. During mobilization of the stored molecules, the PSV membranes collapse osmotically upon themselves, thereby squeezing the vacuolar contents into the remaining bulging vacuolar regions. The collapsed PSV membranes then differentiate into two domains: (1) vacuole “reinflation” domains that produce pre-LVs, and (2) multilamellar autophagosomal domains that are later engulfed by the pre-LVs. The multilamellar autophagosomal domains appear to originate from concentric sheets of PSV membranes that create compartments within which the cytoplasm begins to break down. Engulfment of the multilamellar autophagic vacuoles by the pre-LVs gives rise to the mature LVs. During pre-LV formation, the PSV marker α-TIP disappears and is replaced by the LV marker γ-TIP. These findings demonstrate that the central LVs of root cells arise from PSVs via cell type-specific transformation pathways.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献