ZmPep1, an Ortholog of Arabidopsis Elicitor Peptide 1, Regulates Maize Innate Immunity and Enhances Disease Resistance

Author:

Huffaker Alisa1,Dafoe Nicole J.1,Schmelz Eric A.1

Affiliation:

1. United States Department of Agriculture, Agricultural Research Service Center for Medical, Agricultural, and Veterinary Entomology, Chemistry Research Unit, Gainesville, Florida 32608

Abstract

Abstract ZmPep1 is a bioactive peptide encoded by a previously uncharacterized maize (Zea mays) gene, ZmPROPEP1. ZmPROPEP1 was identified by sequence similarity as an ortholog of the Arabidopsis (Arabidopsis thaliana) AtPROPEP1 gene, which encodes the precursor protein of elicitor peptide 1 (AtPep1). Together with its receptors, AtPEPR1 and AtPEPR2, AtPep1 functions to activate and amplify innate immune responses in Arabidopsis and enhances resistance to both Pythium irregulare and Pseudomonas syringae. Candidate orthologs to the AtPROPEP1 gene have been identified from a variety of crop species; however, prior to this study, activities of the respective peptides encoded by these orthologs were unknown. Expression of the ZmPROPEP1 gene is induced by fungal infection and treatment with jasmonic acid or ZmPep1. ZmPep1 activates de novo synthesis of the hormones jasmonic acid and ethylene and induces the expression of genes encoding the defense proteins endochitinase A, PR-4, PRms, and SerPIN. ZmPep1 also stimulates the expression of Benzoxazineless1, a gene required for the biosynthesis of benzoxazinoid defenses, and the accumulation of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside in leaves. To ascertain whether ZmPep1-induced defenses affect resistance, maize plants were pretreated with the peptide prior to infection with fungal pathogens. Based on cell death and lesion severity, ZmPep1 pretreatment was found to enhance resistance to both southern leaf blight and anthracnose stalk rot caused by Cochliobolis heterostrophus and Colletotrichum graminicola, respectively. We present evidence that peptides belonging to the Pep family have a conserved function across plant species as endogenous regulators of innate immunity and may have potential for enhancing disease resistance in crops.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3