Nontransgenic Genome Modification in Plant Cells

Author:

Marton Ira1,Zuker Amir1,Shklarman Elena1,Zeevi Vardit1,Tovkach Andrey1,Roffe Suzy1,Ovadis Marianna1,Tzfira Tzvi1,Vainstein Alexander1

Affiliation:

1. Danziger Innovations Ltd., Mishmar Hashiva Village, Beit Dagan 50297, Israel (I.M., A.Z., S.R.); Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (I.M., E.S., S.R., M.O., A.V.); Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor,

Abstract

Abstract Zinc finger nucleases (ZFNs) are a powerful tool for genome editing in eukaryotic cells. ZFNs have been used for targeted mutagenesis in model and crop species. In animal and human cells, transient ZFN expression is often achieved by direct gene transfer into the target cells. Stable transformation, however, is the preferred method for gene expression in plant species, and ZFN-expressing transgenic plants have been used for recovery of mutants that are likely to be classified as transgenic due to the use of direct gene-transfer methods into the target cells. Here we present an alternative, nontransgenic approach for ZFN delivery and production of mutant plants using a novel Tobacco rattle virus (TRV)-based expression system for indirect transient delivery of ZFNs into a variety of tissues and cells of intact plants. TRV systemically infected its hosts and virus ZFN-mediated targeted mutagenesis could be clearly observed in newly developed infected tissues as measured by activation of a mutated reporter transgene in tobacco (Nicotiana tabacum) and petunia (Petunia hybrida) plants. The ability of TRV to move to developing buds and regenerating tissues enabled recovery of mutated tobacco and petunia plants. Sequence analysis and transmission of the mutations to the next generation confirmed the stability of the ZFN-induced genetic changes. Because TRV is an RNA virus that can infect a wide range of plant species, it provides a viable alternative to the production of ZFN-mediated mutants while avoiding the use of direct plant-transformation methods.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Reference63 articles.

1. Embryonic stem cell culture and gene targeting in transgenic mice;Baribault;Mol Biol Med,1989

2. Genetics of actin-related sequences in tomato;Bernatzky;Theor Appl Genet,1986

3. Efficient gene targeting in Drosophila with zinc-finger nucleases;Beumer;Genetics,2006

4. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases;Bibikova;Mol Cell Biol,2001

5. Re-engineering plant gene targeting;Britt;Trends Plant Sci,2003

Cited by 161 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3