Differential Expression of Sucrose-Phosphate Synthase Isoenzymes in Tobacco Reflects Their Functional Specialization during Dark-Governed Starch Mobilization in Source Leaves

Author:

Chen Shuai1,Hajirezaei Mohammad1,Börnke Frederik1

Affiliation:

1. Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany

Abstract

Abstract Sucrose (Suc)-phosphate synthase (SPS) plays a crucial role in the synthesis of Suc in photosynthetic and nonphotosynthetic tissues. Several isoforms of SPS exist in dicotyledonous plants that can be grouped into the different families A, B, and C. To explore whether functional differences between the SPS gene families might exist, we characterized a representative for each family from tobacco (Nicotiana tabacum). RNA-blot analysis revealed a distinct expression pattern for each of the three SPS genes. While the A-family member (NtSPSA) was found to be expressed in all tissues examined, expression of the B isoform (NtSPSB) was mainly confined to the reproductive organs and NtSPSC mRNA was exclusively detected in mature source leaves. We used RNA interference to assess the in planta function of NtSPSA and C. While silencing of NtSPSA had no detectable influence on leaf carbohydrate metabolism, reduction of NtSPSC led to an increase in leaf starch content by a factor of 3 to 8. Further analysis revealed that starch accumulation in NtSPSC-silenced plants was not due to an increased partitioning of carbon into starch, but rather showed that starch mobilization was impaired. The transgenic plants were unable to efficiently mobilize their transitory leaf starch during a prolonged period of darkness and accumulated maltose as a major intermediate of starch breakdown. NtSPSC mRNA level increased appreciably during the dark period while transcript levels of the other isoforms showed no diurnal changes. Together, these results suggest that NtSPSC is specifically involved in the synthesis of Suc during starch mobilization in the dark. The roles of the other SPS isoforms are discussed.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3