Active and Semi-Active Vibration Isolation

Author:

Karnopp D.1

Affiliation:

1. Department of Mechanical and Aeronautical Engineering, University of California, Davis, Davis, CA 95616

Abstract

In the five decades since the founding of the ASME Design Engineering Division, the important problem of vibration isolation has been attacked first through the design of passive spring-damper suspensions and later by the use of active and semi-active elements. This paper reviews the historical development of theoretical concepts necessary for the design of isolation systems and indicates how control theory began to influence vibration isolation in the last half of this period. Practical active and semi-active suspensions have only recently become possible with the advent of powerful but relatively inexpensive signal processors. To illustrate these developments for engineers who have not been intimately involved with active systems, only simple vibrational system models will be discussed, although some modern hardware will be shown which is now being applied to complex systems. Instead of attempting to review the many theoretical concepts which have been proposed for active systems, this article will focus on a relatively simple idea with which the author has been associated over the past thirty years; namely the “skyhook” damper. This idea came through purely theoretical studies but is now used in combination with other concepts in production suspension systems. Two quite different application areas will be discussed. The first involves stable platforms to provide extreme isolation for delicate manufacturing operations against seismic inputs and the second involves automotive suspensions. Although similar concepts are found in these two application areas, the widely varying requirements result in very different suspension hardware. The special case of the semi-active damper, which requires very little control power and is presently reaching production, will also be discussed.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference51 articles.

1. Allen, R., and Karnopp, D., 1975, “Semi-Active Control of Ground Vehicle Structural Dynamics,” AIAA Paper No. 75–821.

2. Akatsu, Y., Fukushima, N., Takahashi, K., Satoh, M., and Kawarazaki, Y., 1990, “An Active Suspension Employing an Electrohydraulic Pressure Control System,” SAE Paper 905123.

3. Anon., 1989, “Nissan Active Hydraulic Suspension,” Nissan Motor Co. Ltd., Tokyo.

4. Anon., 1992, “Computerized Electronic Suspension,” Yamaha-O¨hlins HS Project Division Report.

5. Anon., 1993, “Newport Neutralizer Active Vibration Isolation System,” Newport Corporation, Irvine, CA.

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3