Investigation of Hydrogen Enriched Natural Gas Flames in a SGT-700/800 Burner Using OH PLIF and Chemiluminescence Imaging

Author:

Lantz Andreas1,Collin Robert1,Aldén Marcus1,Lindholm Annika2,Larfeldt Jenny2,Lörstad Daniel2

Affiliation:

1. Combustion Physics, Lund University, P.O. Box 118, Lund SE-221 00, Sweden e-mail:

2. Siemens Industrial Turbomachinery AB, Finspong SE-612 83, Sweden e-mail:

Abstract

The effect of hydrogen enrichment to natural gas flames was experimentally investigated at atmospheric pressure conditions using flame chemiluminescence imaging, planar laser-induced fluorescence of hydroxyl radicals (OH PLIF), and dynamic pressure monitoring. The experiments were performed using a third generation dry low emission (DLE) burner used in both SGT-700 and SGT-800 industrial gas turbines from Siemens. The burner was mounted in an atmospheric combustion test rig at Siemens with optical access in the flame region. Four different hydrogen enriched natural gas flames were investigated; 0 vol. %, 30 vol. %, 60 vol. %, and 80 vol. % of hydrogen. The results from flame chemiluminescence imaging and OH PLIF show that the size and shape of the flame was clearly affected by hydrogen addition. The flame becomes shorter and narrower when the amount of hydrogen is increased. For the 60 vol. % and 80 vol. % hydrogen flames the flame has moved upstream and the central recirculation zone that anchors the flame has moved upstream the burner exit. Furthermore, the position of the flame front fluctuated more for the full premixed flame with only natural gas as fuel than for the hydrogen enriched flames. Measurements of pressure drop over the burner show an increase with increased hydrogen in the natural gas despite same air flow thus confirming the observation that the flame front moves upstream toward the burner exit and thereby increasing the blockage of the exit. Dynamic pressure measurements in the combustion chamber wall confirms that small amounts of hydrogen in natural gas changes the amplitude of the dynamic pressure fluctuations and initially dampens the axial mode but at higher levels of hydrogen an enhancement of a transversal mode in the combustion chamber at higher frequencies could occur.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3