Robust Design of Friction Interfaces of Bladed Disks With Respect to Parameter Uncertainties

Author:

Krack Malte1,Panning Lars1,Wallaschek Jörg1,Siewert Christian2,Hartung Andreas3

Affiliation:

1. Leibniz Universität Hannover, Hannover, Germany

2. Siemens AG - Energy Sector, Mülheim an der Ruhr, Germany

3. MTU Aero Engines GmbH, München, Germany

Abstract

Friction damping is a well-known technology in the field of turbomachinery. The design of friction contacts is subject to various uncertainties in the contact parameters and operating conditions. In order to obtain a robust design, it is thus necessary not only to optimize the design for a specific set of parameters but also to assess the performance of the design regarding sensitivities with respect to changes in the parameters. An optimization method for the design of friction interfaces for bladed disks subject to uncertainties has been developed. The nonlinear forced vibrations are computed by efficiently solving the equation of motion using the Multi-Harmonic Balance Method. Coulomb friction and unilateral normal contact constraints are enforced employing an analytical formulation of the Dynamic Lagrangian method. Resonance response levels and frequencies are directly computed with respect to design parameters. Analytically derived sensitivities are then used to obtain the probability for that a certain response level is not exceeded. The method is applied to a tuned blisk in order to obtain the optimum normal preload in the nonlinear shroud coupling subject to a given uncertainty in the level of excitation, for example.

Publisher

American Society of Mechanical Engineers

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3