Simulations of Multi-Phase Particle Deposition on a Non-Axisymmetric Contoured Endwall With Film-Cooling

Author:

Lawson Seth A.1,Lynch Stephen P.1,Thole Karen A.1

Affiliation:

1. The Pennsylvania State University, University Park, PA

Abstract

Designing turbine components for maximum aerodynamic performance with adequate cooling is a critical challenge for gas turbine engineers, particularly at the endwall of a turbine due to complex secondary flows. To complicate matters, impurities from the fuel and intake air can deposit on film-cooled components downstream of the combustor. Deposition induced roughness can reduce cooling effectiveness and aerodynamic performance dramatically. One method commonly used for reducing the effects of secondary flows on aerodynamic performance is endwall contouring. The current study evaluates deposition effects on endwall contouring given the change to the secondary flow pattern. For the current study, deposition was dynamically simulated in a turbine cascade to determine its effects on film-cooling with and without endwall contouring. Computationally predicted impactions were in qualitative agreement with experimental deposition simulations showing that contouring reduced deposition around strategically placed film-cooling holes. Deposition reduced cooling effectiveness by 50% on a flat endwall and 40% on an identically cooled contoured endwall. Although 40% is still a dramatic reduction in effectiveness, the method of using the endwall contouring to alter deposition effects shows promise.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3