On the Necessity for Minimizing Risk Based Technology Qualification Variability: An Application to Offshore Floating Wind Turbines

Author:

Samarakoon S. M. Samindi M. K.1,Ratnayake R. M. Chandima1

Affiliation:

1. University of Stavanger, Stavanger, Norway

Abstract

Abstract Technology qualification (TQ) has been employed to perform assessments to verify whether a new technology performs within pre-specified functional limits after an application. If a best available technology (BAT) is used in a new environment, it is considered as a new technology. The TQ is vital in the implementation of best available technology (BAT) in a new environment. Risk based technology qualification provides an optimal approach for performing TQ of a BAT when it is necessary to implement in a new environment. This manuscript first demonstrates the standard TQ process. Secondly, it presents development of a risk matrix for failure mode identification and consequence risk ranking (FMI&CRR). Thirdly, it demonstrates the use of FMI&CRR in a risk-based technology qualification process. Finally, it presents use of the risk matrix to perform TQ on moorings solutions that have been selected as a BAT for a floating wind turbine sub-system. Fuzzy inference system has been used to assess the risk rank to minimize the variability that causes due to experts’ performance variability. Illustrative risk based TQ assessment has been performed and presented. The developed risk based TQ process (TQP), fuzzy inference system supported risk rank estimation, and illustrative risk based TQ recommendation are significantly important for practitioners while performing FMI&CRR in larger scale offshore floating wind turbines’ TQ projects.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Upstream Healthcare Supply Chain Risk Management in the Implementation of Circular Economy at the Primary Care Level;2023 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM);2023-12-18

2. Inbound Supply Chain Risk Management: A Case Study From an Automotive Manufacturing Firm;2023 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM);2023-12-18

3. Risk-based Inspection and Maintenance Analysis of Distribution Transformers: Development of a Risk Matrix and Fuzzy Logic Based Analysis Approach;2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM);2022-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3