Low-Dielectric Constant Nanoporous Epoxy for Electronic Packaging

Author:

Jiang Jisu1,Keller Landon1,Kohl Paul A.1

Affiliation:

1. School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100

Abstract

Abstract Epoxide functionalized poly(propylene carbonate) (ePPC) was included in an epoxy resin formulation and thermally decomposed to create nanoporous epoxy film. The dielectric constant of the porous epoxy was lower than the epoxy formulation control. The introduction of 30% porosity in the epoxy lowered the dielectric constant from 3.78 to 2.76. A postporosity chemical treatment further lowered the dielectric constant. Hexamethyldisilazane (HMDS) was used to terminate the pore walls with the hydrophobic silane layer and reduce both the dielectric constant and tangent loss of the porous epoxy. Two different styrene maleic anhydride crosslinking agents were used in the epoxy formulation, styrene maleic anhydride 2000 (SMA2000) and styrene maleic anhydride 4000 (SMA4000). The effect of the maleic anhydride concentration within SMA on the electrical, mechanical, and thermal properties of porous epoxy film was evaluated. Epoxy films crosslinked with SMA2000 resulted in films with a higher dielectric constant compared to films prepared with SMA4000 due to higher mole fraction of maleic anhydride within SMA2000. However, SMA2000 crosslinked films yielded films with better mechanical and thermal properties. SMA2000 crosslinked films with 30% porosity had a coefficient of thermal expansion (CTE) of 35.2 ppm/K and glass transition temperature of 143 °C.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference27 articles.

1. Review of Polymer Materials With Low Dielectric Constant;Polym. Int.,2010

2. Epoxy Nanocomposite Capacitors for Application as MCM-L Compatible Integral Passives;ASME J. Electron. Packag.,2002

3. Synthesis and Application of Epoxy Resins: A Review;J. Ind. Eng. Chem.,2015

4. Decomposable and Template Polymers: Fundamentals and Applications;ASME J. Electron. Packag.,2016

5. Adhesion Improvement of a Poly(Tetrafluoroethylene)-Copper Laminate by Thermal Graft Copolymerization;J. Adhes. Sci. Technol.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3