Affiliation:
1. Thermal Hydraulics Laboratory, Department of Mechanical Engineering, University of Wisconsin Madison, Madison, WI 53706
Abstract
Abstract
The Homogenized Heat Exchanger Thermohydraulic (HHXT) modeling environment has been developed to provide thermodynamic modeling of printed circuit heat exchangers (PCHEs). This finite element approach solves solid conduction and fluid thermohydraulics simultaneously, without the need to mesh the minuscule micro-channels of a PCHE. The model handles PCHE features such as headers, solid side walls, and channel inlet and outlet regions, in addition to the micro-channel core. The HHXT model resolves PCHE thermohydraulics using simple model definitions and minimum computational overhead, making it an ideal design tool. This work introduces the thermohydraulic model at the core of HHXT. The homogenization approach used in the model occupies a medium between simplified linear analyses of heat transfer within a PCHE and the brute force of a fully resolved finite element, or computational fluid dynamics, model. An example problem modeling an experimental PCHE is presented. The ability of the HHXT model to simulate fluid flow through a directional varying micro-channel core of two heat-exchanging streams is demonstrated. The HHXT model is being distributed for free within the research community.
Funder
Nuclear Energy University Programs
Subject
Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献